780 research outputs found

    Offshore Structures Exposed to Large Slamming Wave Loads

    Get PDF
    PhD thesis in Offshore technologyIn sloping shallow water regions, waves undergo different nonlinear transformations such as wave shoaling and breaking, due to the nonlinear wave interactions with the seabed. The forces from breaking waves are of concern for offshore structures installed in such regions. The wave breaking forces are large impulsive forces acting for short period of time. The substructures of offshore wind turbines are usually monopile, gravity-based, tripod and jackettype structures. Due to the simplicity in the design and installation, monopile structures are widely used for supporting offshore wind turbines. However, the operating water depths and turbine capacity of monopile substructures are limited. With the increase in the turbine capacity and use in larger water depths, the offshore wind industry has recently focused on rigid types of substructures, such as jackettype structures. In order to estimate the slamming forces due to wave breaking on offshore structures, many research studies have been conducted in the past. However, most of these studies were limited to simple structures such as monopiles. The empirical force models by Goda et al. [5] and Wienke and Oumeraci [7] are widely used in the industry to estimate the breaking wave forces on monopile structures. However, in the case of the jacket structures there have not been much research. Due to the complexity of jacket structures, it is more difficult to analyse the wave forces on a jacket compared to a monopile. The empirical force models developed for approximating the slamming forces on monopiles cannot be easily transferred to jacket structures due to the different member sizes and orientations. Moreover, the uncertainties in these empirical models need to be addressed while using them for jacket structures. In order to study breaking wave interactions with a jacket structure, high quality experimental data is required. Within the WaveSlam experiment ([4, 11]) carried out in a joint collaboration with the University of Stavanger, NTNU and the University of Hannover, a large-scale jacket structure of 1:8 scale was tested for a number of relevant breaking wave conditions. According to the author’s knowledge this is the first largescale experiment conducted to estimate the breaking wave forces on a jacket structure. This experimental dataset forms the basis for the present research. [...

    Freestyle, a randomized version of ChaCha for resisting offline brute-force and dictionary attacks

    Get PDF
    This paper introduces Freestyle, a randomized and variable round version of the ChaCha cipher. Freestyle uses the concept of hash based halting condition where a decryption attempt with an incorrect key is likely to take longer time to halt. This makes Freestyle resistant to key-guessing attacks i.e. brute-force and dictionary based attacks. Freestyle demonstrates a novel approach for ciphertext randomization by using random number of rounds for each block, where the exact number of rounds are unknown to the receiver in advance. Freestyle provides the possibility of generating 21282^{128} different ciphertexts for a given key, nonce, and message; thus resisting key and nonce reuse attacks. Due to its inherent random behavior, Freestyle makes cryptanalysis through known-plaintext, chosen-plaintext, and chosen-ciphertext attacks difficult in practice. On the other hand, Freestyle has costlier cipher initialization process, typically generates 3.125% larger ciphertext, and was found to be 1.6 to 3.2 times slower than ChaCha20. Freestyle is suitable for applications that favor ciphertext randomization and resistance to key-guessing and key reuse attacks over performance and ciphertext size. Freestyle is ideal for applications where ciphertext can be assumed to be in full control of an adversary, and an offline key-guessing attack can be carried out

    Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption\ud

    Get PDF
    We present a ‘hybrid’ imaging approach which can image both light absorption properties and acoustic transmission properties of an object in a two-dimensional slice using a computed tomography (CT) photoacoustic imager. The ultrasound transmission measurement method uses a strong optical absorber of small cross-section placed in the path of the light illuminating the sample. This absorber, which we call a passive element acts as a source of ultrasound. The interaction of ultrasound with the sample can be measured in transmission, using the same ultrasound detector used for photoacoustics. Such measurements are made at various angles around the sample in a CT approach. Images of the ultrasound propagation parameters, attenuation and speed of sound, can be reconstructed by inversion of a measurement model. We validate the method on specially designed phantoms and biological specimens. The obtained images are quantitative in terms of the shape, size, location, and acoustic properties of the examined heterogeneitie

    2H,3H-decafluoropentane-based nanodroplets: New perspectives for oxygen delivery to hypoxic cutaneous tissues

    Get PDF
    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues

    Detection of Melanoma Metastases in Resected Human Lymph Nodes by Noninvasive Multispectral Photoacoustic Imaging

    Get PDF
    Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes

    Early diagnosis of bladder cancer by photoacoustic imaging of tumor-targeted gold nanorods

    Get PDF
    Detection and removal of bladder cancer lesions at an early stage is crucial for preventing tumor relapse and progression. This study aimed to develop a new technological platform for the visualization of small and flat urothelial lesions of high-grade bladder carcinoma in situ (CIS). We found that the integrin alpha 581, overexpressed in bladder cancer cell lines, murine orthotopic bladder cancer and human bladder CIS, can be exploited as a receptor for targeted delivery of GNRs functionalized with the cyclic CphgisoDGRG peptide (Iso4). The GNRs@Chit-Iso4 was stable in urine and selectively recognized alpha 581 positive neoplastic urothelium, while low frequency ultrasound-assisted shaking of intravesically instilled GNRs@Chit-Iso4 allowed the distribution of nanoparticles across the entire volume of the bladder. Photoacoustic imaging of GNRs@Chit-Iso4 bound to tumor cells allowed for the detection of neoplastic lesions smaller than 0.5 mm that were undetectable by ultrasound imaging and bioluminescence
    • …
    corecore